Risultati analitici ottenuti dai Piani di Monitoraggio molluschi della provincia di Ferrara dal 2005 al 2009

Ferrara 22 settembre 2010

Silva Rubini I.Z.S.L.E.R. – Sezione di Ferrara silva.rubini@izsler.it

- ✓ I molluschi bivalvi sono stati spesso segnalati come vettori responsabili di malattie nell'uomo
- ✓ L'intensa attività filtrante rende questi animali degli accumulatori biologici in grado di concentrare al loro interno vari agenti più o meno nocivi per l'uomo (batteri, virus, biotossine algali, metalli pesanti,....)
- ✓ I molluschi vengono allevati in aree estuarine e in ambienti costieri spesso contaminati dalle attività umane
- ✓ Il consumo di molluschi crudi o poco cotti è un'ulteriore fattore di rischio per il consumatore

CONTAMINAZIONE DEI MOLLUSCHI

- ✓ CONTAMINAZIONE PRIMARIA ~ nelle acque di allevamento e/o raccolta
- ✓ **CONTAMINAZIONE SECONDARIA** ~ durante le fasi di preparazione e distribuzione
- ✓ CONTAMINAZIONE CROCIATA ~ contatto con superfici sporche e con altri alimenti contaminati

✓ Le malattie trasmissibili attraverso il consumo di molluschi bivalvi possono essere di natura infettiva e non infettiva

Agenti infettivi	Agenti non infettivi
Virus	Metalli pesanti
Batteri	Inquinanti chimici
Protozoi	Biotossine marine

✓ La potenziale pericolosità dei molluschi bivalvi e le frequenti segnalazioni di malattie nell'uomo legate al consumo di questi prodotti ha suscitato un notevole interesse da parte dell'Unione Europea che ha emanato molti provvedimenti normativi sull'argomento

✓ Pacchetto igiene:

- √Reg. 853/2004 e succ. mod.
- √Reg. 854/2004 e succ. mod.
- √Reg 2073/2005 e succ. mod.
- ✓ Reg 1881/2006 e succ. mod.

Dal punto di vista microbiologico un mollusco è considerato idoneo al consumo umano quando:

- ✓ non supera i 230 *E. coli*/100 g di polpa e liquido intervalvare (ISO/TS 16649~3:2005)
- ✓ la *Salmonella* spp. è assente in 25 g di polpa e liquido intervalvare (ISO 6579:2002/Cor.1:2004)

- ✓ *Escherichia coli* è utilizzato come indicatore di inquinamento fecale
- ✓ I coliformi fecali in generale, e *Escherichia coli* in particolare, hanno come **habitat** l'intestino dell'uomo e degli animali
- ✓ Nell'intestino degli animali sono i batteri presenti in maggior numero
- ✓ Sono abbastanza resistenti agli stress ambientali
- ✓ Sono facili da isolare
- ✓ La tecnica prevista dalla ISO/TS 16649~3:2005 è un MPN (most probable number), cioè un conteggio indiretto del contenuto microbico effettuato su terreni selettivi liquidi

La specie *E. coli* comprende ceppi non patogeni (la maggior parte) e ceppi patogeni. Questi ultimi sono suddivisi in:

- ✓ ENTEROINVASIVI (EIEC): aderiscono alle cellule della mucosa intestinale e causano diarrea acquosa.
- ✓ ENTEROPATOGENI (EPEC): in grado di penetrare e moltiplicarsi nelle cellule della mucosa intestinale. Pericolosi in neonati, bambini e adulti defedati.
- ✓ ENTEROTOSSIGENI (ETEC): elaborano tossine termolabili (LT) simili a quella del colera e termostabili (ST) che resistono alla temperatura di 100°C per 3 ore.
- ✓ ENTEROEMORRAGICI (EHEC): comprendono i ceppi VEROCITOTOSSICI (VTEC) in grado di provocare colite emorragica e sindrome emolitico~uremica di grave entità (*E. coli* O157 H7; O26,....).

Mitili ~ Zona A

Mitili ~ Zona B

Anno	<i>E.coli</i> N° esami	<i>E.coli</i> NC (>230)	<i>E.coli</i> N° esami	<i>E.coli</i> NC (>4600)
2005	50	2 (1,0%)	60	0
2006	37	1 (2,7%)	47	2 (4,3%)
2007	31	2 (6,5%)	47	3 (6,4%)
2008	39	10 (25,6%)	41	1 (2,4%)
2009	47	6 (12,8%)	33	1 (3,0%)

Ostriche - Zona A

Ostriche ~ Zona B

Anno	<i>E.coli</i> N° esami	<i>E.coli</i> NC (>230)	<i>E.coli</i> N° esami	<i>E.coli</i> NC (>4600)
2005	7	0	21	0
2006	3	0	34	1 (2,9%)
2007	7	0	25	1 (4,0%)
2008	2	0	21	0
2009	3	0	26	1 (3,8%)

Vongole veraci ~ Zona B

Anno	<i>E.coli</i> N° esami	<i>E.coli</i> NC (>4600)
2005	143	12 (8,4%)
2006	169	30 (17,8%)
2007	144	12 (8,3%)
2008	168	14 (8,3%)
2009	146	21 (14,4%)

Chamelea - Zona A

Chamelea - Zona B

Anno	<i>E.coli</i> N° esami	<i>E.coli</i> NC (>230)	<i>E.coli</i> N° esami	<i>E.coli</i> NC (>4600)
2005	24	1 (4,2%)		
2006	29	3 (10,3%)		
2007	49	2 (4,1%)	36	1 (2,8%)
2008	36	7 (19,4%)	27	0
2009	23	5 (21,7%)	17	0

Salmonella sp.

- * Il genere Salmonella comprende più di 2000 sierovarianti, molte delle quali patogene per l'uomo
- Il fatto che molluschi bivalvi e crostacei siano frequentemente all'origine di tossinfezioni alimentari da salmonelle è noto da tempo
- * In particolare i bivalvi sono i grado di concentrare rapidamente questi germi patogeni presenti in ambienti acquatici contaminati
- * Ma le salmonelle possono penetrare nei molluschi anche in seguito a manipolazioni e trattamenti effettuati in condizioni igieniche insufficienti

Salmonellosi

- Con il termine "salmonellosi" si designano tutte le affezioni sostenute da batteri appartenenti al genere Salmonella
- × Nell'ambito delle salmonellosi si distinguono 2 gruppi:
 - * Il primo è costituito da forme SETTICEMICHE e comprende: febbre tifoide e febbri paratifoidi A, B e C
 - * Il secondo gruppo è costituito da forme localizzate prevalentemente all'APPARATO GASTROENTERICO

FEBBRI TIFOIDI E PARATIFOIDI

- Le febbri tifoidi e paratifoidi rientrano tra le patologie a trasmissione oro-fecale
- * Si tratta di malattie infettive acute causate rispettivamente da *Salmonella typhi* e *Salmonella paratyphi* A, B e C, che insorgono dopo un periodo di incubazione medio di 1-3 settimane, ma può variare a seconda della dose infettante da 3 giorni a 3 mesi
- La fonte di infezione è rappresentata dagli individui malati o portatori che eliminano i germi con le feci. Queste, a loro volta possono contaminare cibi e bevande

- * Se queste salmonelle riescono a passare la barriera gastrica, raggiungono l'intestino e da qui possono passare ai linfonodi mesenterici, ai vasi linfatici e quindi, attraverso il dotto toracico, al torrente circolatorio (setticemia)
- * I sintomi sono rappresentati da febbre elevata e persistente, nausea, anoressia e bradicardia. In seguito si osservano chiazze rosse all'addome ed ai fianchi, splenomegalia e diarrea

- La diagnosi di certezza si ottiene con l'esame colturale delle feci
- * Nei casi non complicati la guarigione avviene spontaneamente, senza terapia antibiotica. La convalescenza è lunga, da 1 a 8 settimane e non sono rare le ricadute

DISTRIBUZIONE DELLE FEBBRI TIFOIDI

Dal sito wwwnc.cdc.gov: si stimano 22 milioni di casi di febbre tifoide nel mondo ogni anni con 200.000 decessi e 6 milioni di casi di febbri paratifoidi

Circa 400 casi di tifo e 150 di paratifo ogni anno negli USA, la maggior parte in persone che avevano fatto un viaggio poco prima

SALMONELLOSI GASTROENTERICHE

- * Le salmonellosi del secondo gruppo si localizzano nel tratto gastroenterico e sono responsabili di enterocoliti acute quasi sempre di origine alimentare
- × Queste salmonellosi costituiscono uno dei gruppi più importanti di malattie trasmesse attraverso cibi e bevande
- * Qualche sierotipo sembra avere ospiti preferiti, ma in generale si riscontrano in tutti gli animali a sangue caldo (uomo compreso) e in molti animali a sangue freddo

- Le tossinfezioni da *Salmonella* sp. sono ovunque in continuo aumento, particolarmente nei cosiddetti Paesi industrialmente sviluppati.
- ➤ I motivi di tale distribuzione vanno attribuiti a diversi fattori:
 - * diffusione della ristorazione collettiva
 - * consumo di prodotti crudi o poco cotti
 - * importazione di prodotti da Paesi "a rischio"
 - * allevamenti intensivi
 - * farmaco-resistenza e abuso di farmaci

- * Mentre le affezioni tifoidi dell'uomo sono tenute in genere sotto controllo dall'attuale Organizzazione Sanitaria, questo non avviene per le infezioni causate dalle altre salmonelle
- Tutti i sierotipi di salmonelle sono potenzialmente patogeni per l'uomo, ma le sierovarianti Typhimurium ed Enteritidis sono quelli responsabili del maggior numero di casi di infezioni
- * Tra le sierovarianti più patogene sono state di recente introdotte *Salmonella* serovar. Infantum, Hadar e Virchow

PATOGENESI

- * In linea generale si può ammettere che per molti sierotipi il potere patogeno è in rapporto diretto col numero di germi assunti dall'ospite sensibile.
- ➤ Un fatto non trascurabile è dato anche dalla resistenza individuale all'infezione.
- * Accanto a persone, per natura, molto resistenti all'attacco salmonellare ve ne sono altre spiccatamente sensibili come ad esempio gli immunocompromessi, i dializzati, i bambini, gli anziani, le persone gastrectomizzate.

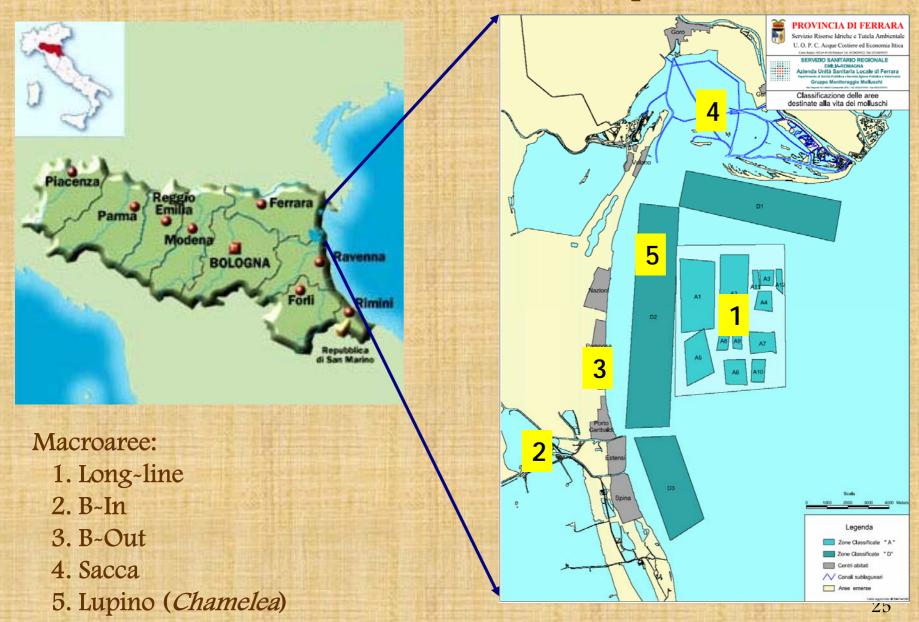
SINTOMI

- * I sintomi nell'uomo compaiono generalmente da 18 a 24 ore dall'ingestione dei prodotti contaminati e sono rappresentati da diarrea, dolori addominali e, a volte, febbre.
- ➤ Il quadro clinico va progressivamente attenuandosi e si risolve in 4~5 giorni.
- * Nelle persone "a rischio" si riscontrano anche disidratazione, acidosi e alterazioni elettrolitiche. In questi casi il decorso diventa particolarmente grave e, se non si interviene con una idonea terapia, la malattia può avere esito fatale.

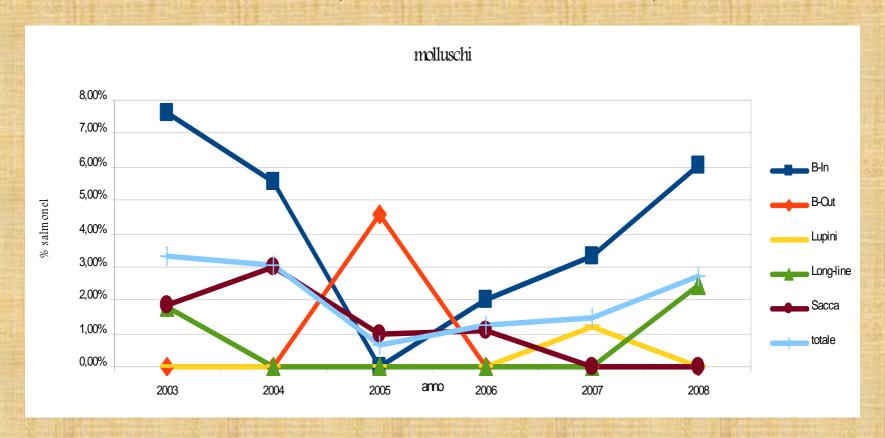
DIAGNOSI E TERAPIA

- ➤ Una coprocoltura evidenzia facilmente il germe responsabile.
- La più importante misura terapeutica è costituita da un pronto ripristino degli equilibri elettrolitici.
- * Nelle forme non complicate sono sconsigliati i farmaci antimicrobici poiché è ampiamente dimostrato che causano:
 - * un aumento dei tempi di eliminazione di salmonelle,
 - * un ulteriore grave squilibrio della flora microbica intestinale
 - * possono favorire la comparsa di fattori trasferibili di antibiotico~resistenza.

Il trattamento antibiotico si applica invece

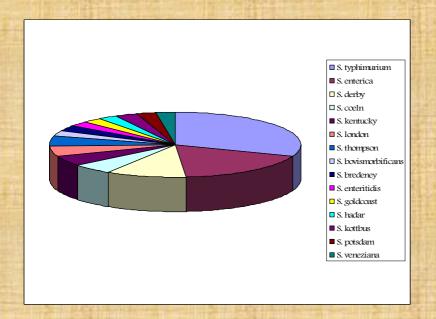

- * nei lattanti
- * nei pazienti immunocompromessi
- * portatori di protesi cardiache
- * persone affette da malattie infiammatorie croniche dell'intestino come la colite ulcerosa o il morbo di Crohn

Risultati PMM - Ricerca Salmonella spp. 2005 - 2009


MATRICE	n° CAMPIONI	POSITIVI Salmonella	% POSITIVI
Acqua Zona A	379	0	0%
Acqua Zona B	1050	25	2,4%
Chamelea - Zona A	161	2	1,2%
Chamelea - Zona B	80	0	0%
Tapes - Zona B	770	28	3,6%
Ostriche - Zona A	22	0	0%
Ostriche - Zona B	127	0	0%
Mitili ~ Zona A	204	3	1,5%
Mitili ~ Zona B	228	2	0,9%
TOTALE ESAMI	3021	60	2,0%

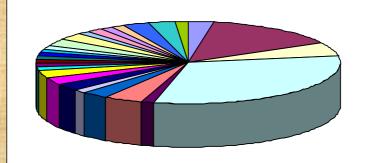
24

EPIVET Torino 2009 - Area di campionamento


Risultati (EPIVET Torino 2009)

In tutte le macroaree è stata isolata *Salmonella* spp. almeno una volta dai molluschi

Risultati (EPIVET Torino 2009)


Dal 2003 al 2008 sono state identificate **16 sierovarianti** diverse di *Salmonella*. La più frequente è risultata *Salmonella* Typhimurium

Sierovariante	N° isolamenti
S. Typhimurium	12
S. Enterica	7
S. Derby	4
S. Coeln	2
S. Kentucky	2
S. London	2
S. Thompson	2
S. Bovismorbificans	1
S. Bredeney	1
S. Enteritidis	1
S. Goldcoast	1
S. Hadar	1
S. Kottbus	1
S. Potsdam	1
S. Veneziana	1

Risultati PMM - Serovar. Salmonella spp. 2003 - 2009

Dal 2003 al 2009 sono state identificate **27 sierovarianti** diverse di *Salmonella*. La variante riscontrata di più frequente rimane *Salmonella* Typhimurium

- S. Coeln
- S. enterica subsp. Enterica
- □ S. Derby
- S. Typhimurium
- S. Give
- S. Senftenberg
- S. Saintpaul
- S. enterica subsp. Houtenae
- S. Veneziana
- S. Newport
- □s. Panama
- S. Rissen
- S. Braenderup
- S. enterica subsp. Salamae
- S. Johannesburg
- S. Bovismorbificans
- S. Bredeney
- S. Goldcoast
- □ S. Kentucky
- S. Thompson
- S. Hadar
- ■S. Kottbus
- S. Potsdam
- □ S. Enteritidis
- S. London
- S. enterica subsp. Diarizonae
- S. Muenchen

Vibrio sp.

- ★ infezioni spesso sottovalutate nel nostro Paese
- ★ la ricerca di tali germi negli alimenti destinati all'alimentazione umana spesso è ritenuta superflua
- ★ numerosi fattori inducono ad effettuare la ricerca di vibrioni da alimenti, ma anche da campioni clinici e da campioni ambientali (acque e sedimenti), anche in zone geograficamente lontane o comunque non prossime alla costa

Tra questi fattori ricordiamo:

- ★ l'aumentato consumo di prodotti ittici in generale
- ★ l'abitudine, sempre più frequente, a consumare prodotti ittici crudi o poco cotti
- ★ l'incremento degli scambi commerciali con Paesi "a rischio" come il Sud-Est asiatico o il Sud America
- ★ segnalazioni di isolamenti di *V. cholerae* non-O1 e di *V. parahaemolyticus* in alimenti importati (code di gamberi)

E ancora:

- ★ i sempre più frequenti viaggi per lavoro o turismo in aree endemiche
- ★ l'afflusso di immigrati da aree dove il colera è endemico (Estremo Oriente, Europa dell'Est)
- ★ il fatto che l'immersione dei molluschi in vasche di depurazione (CDM) induce una drastica diminuzione della colimetria ma non dei vibrioni

Occorre però tener conto:

- ★ la carenza di norme legislative chiare che stabiliscano procedure a cui attenersi nel momento in cui ci si trovi ad isolare un *Vibrio* sp. da campioni di alimenti
- ★ le controversie sull'effettivo ruolo patogeno di quei ceppi di *Vibrio* sp. non produttori di tossine

Epidemiologia delle infezioni umane da Vibrio sp.

- ★ La maggior parte delle infezioni causate da *Vibrio* sp. sono associate ad una esposizione ad acque superficiali o a consumo di prodotti ittici
- ★ Comunque, delle 70 specie finora conosciute, solo 12 si sono finora dimostrate in grado di causare infezioni nell'uomo o sono state isolate da campioni clinici di origine umana

- ★ Fra le specie sicuramente patogene per l'uomo si ricordano: *Vibrio cholerae* O1, *Vibrio cholerae* O139, alcuni ceppi di *Vibrio parahaemolyticus* in grado di indurre gravi patologie gastroenteriche e *Vibrio vulnificus*
- ★ Il diverso tropismo dei vibrioni ci permette di suddividerli in 2 gruppi:
 - ★ a tropismo prevalentemente INTESTINALE
 - ★ a tropismo prevalentemente EXTRAINTESTINALE

Principali Vibrio patogeni per l'uomo e loro prevalente fonte di isolamento

Specie	Prev. intestinale	Prev. extraintestinale
V. cholerae O1 e O139	++++	7 15 ± 15 55
V. cholerae non O1 (NAG)	++	++
V. mimicus	++	+
V. parahaemolyticus	++++	1923
V. vulnificus	+ + +	+++
V. alginolyticus	+	++
V. fluviatis	97: 2 ++ 37:5	
V. furnissii	++	
V. hollisae	++	
V. carchariae		+
V. cincinnatiensis		+
V. damsela		++
V. metschnikovii		+

Colera

- ★ Il colera è stato considerato fino a pochi anni fa una malattia causata esclusivamente da *Vibrio cholerae* O1, produttore della caratteristica tossina colerica.
- ★ Vibrio cholerae O1 comprende 2 biotipi:
 - ★ Classico noto dal 1883
 - ★El Tor, scoperto nel 1905
- ★ Ogni biotipo può essere a sua volta suddiviso in 3 distinti sierotipi: Inaba, Ogawa ed Hikojima.

- ★ Vibrio cholerae O1 biotipo El Tor è il responsabile della VII pandemia. Le 6 pandemie precedenti si sono verificate tra il 1817 e il 1923
- ★ La pandemia è iniziata nel 1961 in Indonesia e si è diffusa in Asia Orientale, Bangladesh (1963), in India (1964), in Iran, in Iraq e nella ex~URSS (1965~66)
- ★ Nel 1965 è arrivata in Europa (6215 casi con oltre 100 decessi)
- ★ Nel 1973 in Italia, a Napoli e in Puglia (277 casi e 24 decessi)
 - ★ Nel 1979 in Sardegna
 - ★ Nel 1994 a Bari
 - ★ Nell'agosto 2008 si è verificato 1 decesso a Milano

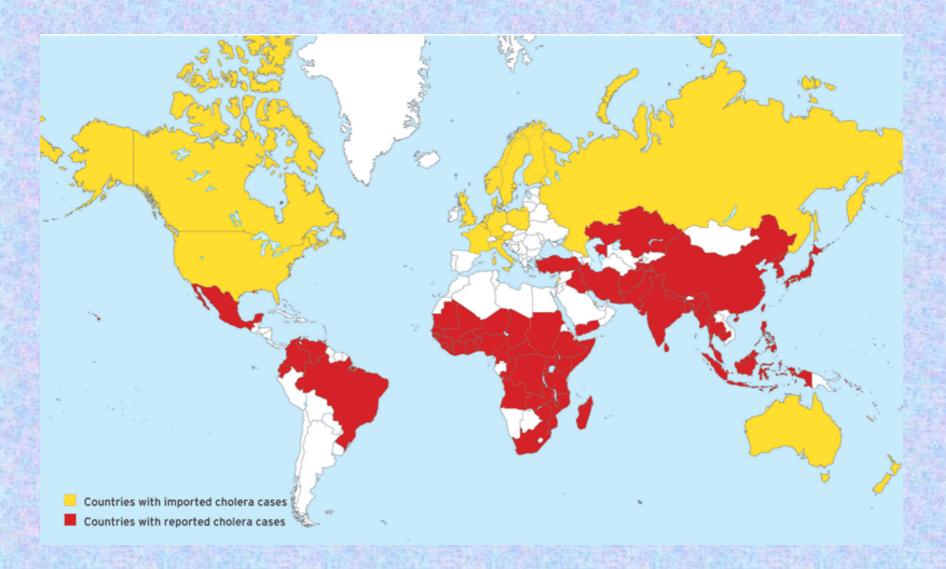
- ★ Negli anni '90 la VII pandemia è stata caratterizzata da due eventi importanti.
- ★ Il primo è stato la sua comparsa in America Latina nel gennaio 1991, dopo circa un secolo di assenza.
- ★ Dal 1991 al 1994 furono colpite 1.041.422 persone con 9642 decessi.

- ★ Il secondo, indubbiamente più grave, è stato la comparsa alla fine del 1992, nel sud dell'India, di un nuovo ceppo di *Vibrio cholerae* non-O1, con spiccata capacità epidemica, classificato come *Vibrio cholerae* O139 Bengala
- ★ Tutte le aree dell'India e dei paesi limitrofi (Bangladesh, Cina, Malesia, India, Nepal, Pakistan, Sri Lanka) già considerate endemiche per *Vibrio cholerae* O1, sono state invase dal nuovo ceppo di *Vibrio cholerae* O139 che è ritenuto responsabile della VIII pandemia

- ★ Vibrio cholerae O139 deriva geneticamente da un ceppo El Tor che ha subito variazioni nella struttura antigenica
- ★ Si ricorda che non esiste protezione crociata tra i due sierogruppi O1 ed O139
- ★ La diffusione epidemica dell'infezione colerica è favorita dalla presenza di scarse condizioni igienico~sanitarie con contaminazione delle risorse idriche

- ★ Più rara risulta essere la trasmissione per contatto diretto tra persona malata o infetta e persona sana
- ★ Infatti, è stato dimostrato su volontari, che è necessaria l'ingestione di circa 1 milione di cellule vitali per causare sintomatologia (dipende dall'acidità dello stomaco)
- ★ Maggiormente suscettibili all'infezione sono risultati essere gli individui più giovani e più anziani, coloro che erano affetti da altre malattie intercorrenti e quelli con deficit dello stato nutrizionale

- ★ Il periodo di incubazione è di 12~72 ore
- ★ Una volta arrivato nell'intestino *V. cholerae* aderisce all'epitelio intestinale senza penetrarvi. La capacità di adesione ai microvilli è un'importante fattore patogenetico. A questo punto comincia la secrezione di tossina colerica e compare una imponente diarrea di tipo secretorio
- ★ Ne conseguono disidratazione e morte. La terapia fluida rimpiazza i liquidi e un trattamento antibiotico (tetracicline) è spesso consigliato


RESISTENZA AGLI ANTIBIOTICI

- ★ Quello della farmacoresistenza è un serio problema riscontrato spesso nelle infezioni da *Vibrio* sp.
- ★ Le tetracicline sono stati i primi antibiotici utilizzati per il trattamento del colera. Occorre però ricordare che tutti i ceppi di *V. cholerae* O1 isolati in Italia nel corso del focolaio del 1994 sono risultati resistenti alle tetracicline e ai sulfamidici potenziati (trimethoprim~sulfametossazolo)
- ★ Risulta quindi di fondamentale importanza l'esecuzione di un ANTIBIOGRAMMA per definire l'antibiotico adatto alla terapia

Distribuzione del Colera nel mondo

Distribuzione del Colera nel mondo

Vibrio cholerae non-O1, non-O139 (NAG)

- ★ Sono attualmente noti 193 sierogruppi di *Vibrio cholerae* non-O1 e non-O139 che vengono considerati, per definizione, quelli non agglutinabili da antisieri O1 e O139 (*V. cholerae* NAG)
- ★ Questi sierotipi sono diffusi in tutto il mondo e, a differenza del sierogruppo O1, non è mai stata messa in dubbio una loro riserva ambientale, riferibile, in particolare, alle acque superficiali soprattutto marine, costiere e di estuari

- ★ La sintomatologia nell'uomo è meno grave di quella indotta da *Vibrio cholerae* O1 ed O139, solo in alcuni casi si è osservata diarrea con muco o sangue; più spesso le sindromi gastroenteriche ricalcano quelle che si evidenziano nelle sindromi da *Escherichia coli* (diarrea del viaggiatore)
- ★ I Vibrio cholerae non-O1 sono stati isolati anche da tamponi auricolari, ferite infette ed altre localizzazioni extraintestinali

Vibrio parahaemolyticus

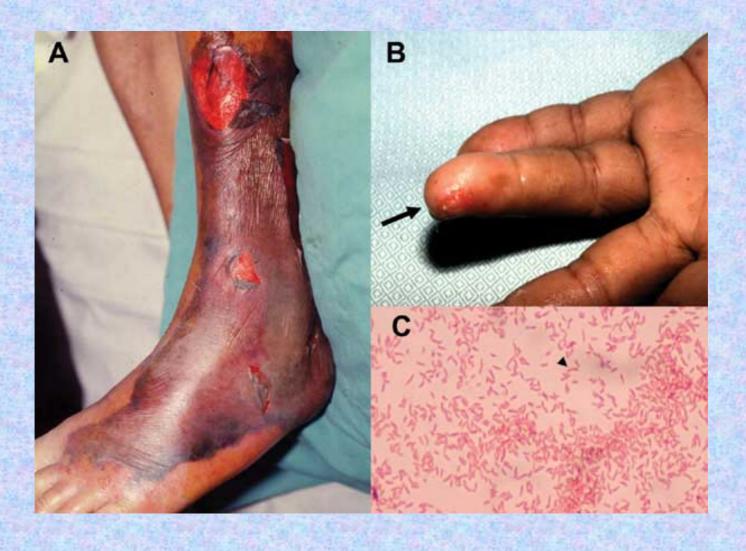
- ★ Fa parte della normale flora microbica delle acque costiere di tutto il mondo
- ★ Generalmente durante i mesi più freddi lo si isola prevalentemente dai sedimenti del fondale, mentre nella stagione estiva si ritrova in tutta la colonna d'acqua, nei pesci e nei molluschi
- ★ *V. parahaemolyticus* è un germe invasivo che colpisce soprattutto il colon, invece *V. cholerae* è un non-invasivo e colpisce il piccolo intestino, attraverso la secrezione di enterotossina.

- ★ Il periodo di incubazione va da 4 a 96 ore e varia con la quantità di germi ingeriti
- ★ I ceppi patogeni determinano nell'uomo gastroenteriti con diarrea acquosa, solo a volte con presenza di sangue, vomito, crampi addominali, cefalea e febbre di moderata entità
- ★ Le infezioni sono generalmente lievi e autolimitanti
- ★ La terapia antibiotica non accorcia il decorso clinico e neppure la durata dell'escrezione fecale del microrganismo

- ★ La trasmissione di *V. parahaemolyticus* si verifica soprattutto per via alimentare con la ingestione di acque contaminate e di prodotti ittici crudi o poco cotti.
- ★ Nel 1998 in California ha causato il ricovero in ospedale di circa 200 persone con sintomi simili a quelli del colera. Tutti i pazienti avevano consumato mitili provenienti dallo stesso allevamento.

- ★ Nel 2003 in Messico sono stati registrati 1230 casi di infezione nell'uomo
- ★ Nel 2005 in Cile sono stati segnalati 10.783 casi di diarrea da *V. parahaemolyticus* O3:K6
- ★ Gli alimenti da cui è stato più spesso isolato questo sierotipo, durante e dopo l'epidemia cilena, sono mitili e vongole


CARATTERISTICHE DI VIRULENZA

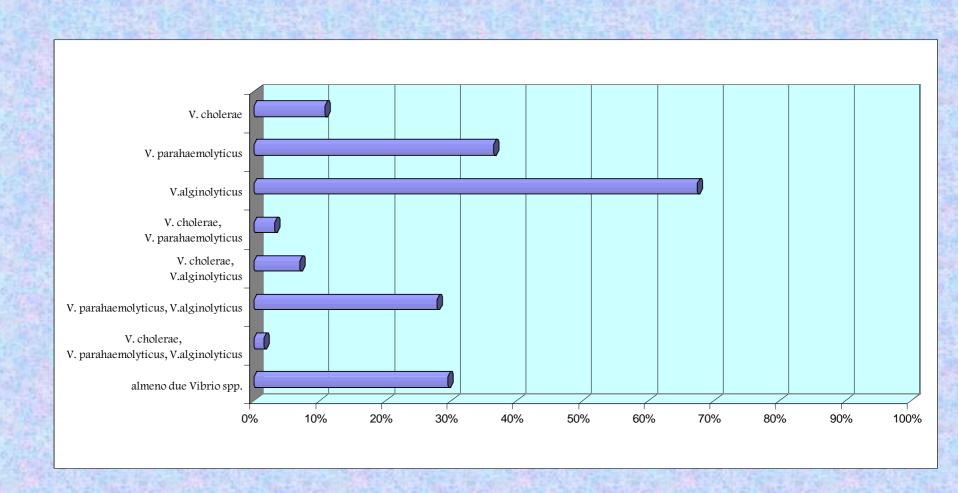

- ★ Attualmente sono noti:
 - ★ 13 sierogruppi "O"
 - ★ 71 sierotipi "K"
- ★ Oltre a O3:K6 risultano particolarmente pericolosi i sierotipi O4:K68, O1:K26, O1:K? (non tipizzabile),.....
- ★ Le caratteristiche di virulenza associate a *V. parahaemolyticus* sono diverse; tra queste:
 - ★ la capacità di produrre TDH (thermostable direct hemolysin) (Kanagawa positivi)
 - ★ la capacità di produrre TRH (thermostable direct related hemolysin) (Kanagawa negativi)

Vibrio vulnificus

- ★ Causa soprattutto infezioni di ferite e setticemie a volte mortali. Può causare anche forme gastroenteriche con brividi, febbre e nausea)
- ★ Il periodo di incubazione è di circa 35-40 ore e la dose infettante è molto bassa (10³ germi)
- ★ Il quadro clinico insorge rapidamente ed è caratterizzato da setticemia acuta con febbre, ipotensione fino al collasso e comparsa di lesioni cutanee, inizialmente eritematose, che presto evolvono in bolle e vescicole emorragiche e, successivamente, in ulcere necrotiche
- ★ L'esito risulta fatale nel 50% dei pazienti

- ★ La presenza di *V. vulnificus* non è associata a inquinamento ambientale poiché si tratta di un normale abitatore delle acque marine di tutto il mondo
- ★ La trasmissione avviene per esposizione di lesioni cutanee aperte all'acqua marina o a materiale contaminato di origine marina

(CDC Emerging Infectious Diseases Vol. 10, Num. 8, August 2004)


DIAGNOSI DI LABORATORIO

- ★ Un serio problema diagnostico è rappresentato dalla capacità dei vibrioni ad adattarsi alle variazioni dell'ambiente che comprendono:
 - * temperatura
 - * salinità
 - **★** рН
 - * concentrazione di nutrienti,
- ★ I vibrioni sono capaci di entrare in una fase di quiescenza e diventano NON COLTIVABILI con i tradizionali metodi di laboratorio

Frequenza di isolamento di Vibrio spp. in 127 campioni

Specie di Vibrio isolate	Positivi	%
V. cholerae NAG	14	11,0
V. parahaemolyticus	47	37,0
V. alginolyticus	87	68,5
V. cholerae	4	3,1
V. parahaemolyticus		
V. cholerae	9	7,1
V. alginolyticus		
V. parahaemolyticus	36	28,3
V. alginolyticus		
V. cholerae V. alginolyticus	2	1,6
V. parahaemolyticus		
Minimo 2 diverse specie di Vibrio	38	29,9

Frequenza di isolamento di Vibrio spp. in 127 campioni

MALATTIE VIRALI

- ➤ I virus trasmissibili attraverso il consumo di molluschi bivalvi appartengono alla categoria dei VIRUS ENTERICI
- > attualmente note 120 specie diverse
- i virus agenti di gastroenteriti, noti per essere trasmessi attraverso gli alimenti derivano soprattutto dall'intestino umano e vengono eliminati con le feci
- Perciò le malattie virali trasmesse con gli alimenti derivano in genere da contaminazione fecale del cibo e dell'acqua

MALATTIE VIRALI

- Dopo l'acqua gli alimenti più spesso implicati nella trasmissione dei virus sono i molluschi bivalvi (soprattutto ostriche e mitili)
- Ciò è dovuto sia alla loro capacità di filtrare e concentrare particelle virali, sia al fatto che spesso questi alimenti vengono consumati crudi o poco cotti
- > secondo alcuni studi la carica infettante è molto bassa, sono sufficienti 10 particelle virali per indurre malattia

Famiglia	Genere	Specie (Sierotipi)	Sintomi
Picornaviridae	Enterovirus	Poliovirus (3)	poliomielite paralitica, meningite asettica, encefalite, miocardite e pericardite acuta, sindromi febbrili aspecifiche
	Enterovirus	Coxackievirus A (23)	meningite asettica, encefalite, febbre, forme respiratorie aspecifiche
	Enterovirus	Coxackievirus B (6)	meningite asettica, miocardite e pericardite acuta, mialgie, esantemi, forme respiratorie aspecifiche
	Enterovirus	Echovirus (32)	meningite asettica, esantemi, febbre, forme respiratorie aspecifiche, gastroenterite acuta
	Enterovirus	Enterovirus 68-71 (4)	forme respiratorie acute (68-69), congiuntivite emorragica acuta epidemica (70), infezioni del SNC (71)
	Hepatovirus	HAV (1)	Epatite virale A
Caliciviridae		HEV (1)	Epatite virale E
	Norovirus Sapovirus	NoroV, SapoV (13)	diarrea, vomito, gastroenteritis acute epidemiche
Reoviridae	Rotavirus	Rotavirus (6)	diarree infantili, vomito
	Orthoreovirus	Reovirus (3)	non accertata
Astroviridae	Astrovirus	Astrovirus (8)	diarree infantili
Coronaviridae	Coronavirus	HCoV-229°; HCoV-OC43 SARS-HCoV (3)	affezioni respiratorie, polmonite atipica, gastroenteriti

VIRUS ENTERICI DELL'UOMO E SINTOMI CORRELATI

- > Virus che provocano gastroenteriti:
 - Calicivirus (Norovirus e Sapovirus)
 - > Rotavirus
 - > Adenovirus
- > Virus dell'epatite trasmessa per via oro-fecale
 - > Epatite A (HAV)
 - > Epatite E (HEV)
- Virus che si moltiplicano nell'intestino ma provocano malattia in altri organi (SNC, fegato,...)
 - > Enterovirus

(De Medici e Paniconi, 2005)

MALATTIE VIRALI

- ➤ Quando si è di fronte ad una contaminazione da parte di acque reflue, come avviene in genere nella contaminazione dei molluschi, è possibile identificare più di un tipo virale
- Infatti sono stati segnalati casi di gastroenterite verificatisi 24 ore dopo il consumo di frutti di mare, seguiti a distanza di 3~6 settimane da un'epatite A

- riconosciuta come malattia virale trasmissibile con gli alimenti negli anni '40
- Associata per la prima volta a frutti di mare dopo un'epidemia causata da ostriche in Svezia nella metà degli anni '50
- > I molluschi sono responsabili del:
 - > 19% dei casi di HAV in Germania
 - > 25% dei casi in Inghilterra
 - > oltre 1000 casi all'anno negli U.S.A
 - La Puglia è considerata regione endemica per HAV
- In Cina nel 1988: 292.000 casi di HAV trasmessa da mitili
- Luglio 2010: un focolaio a Londra

- > HAV ha come sito di replicazione le cellule epatiche; dagli epatociti viene poi eliminato per via fecale
- ➤ HAV sembra essere infettivo solo per l'uomo; alcuni primati sono suscettibili, ma non è chiaro se essi possano contrarre la malattia naturalmente
- La malattia è diffusa in tutto il mondo (notificata in 125 Paesi)
- E' difficile stimarne l'esatta incidenza a causa dell'elevato numero di infezioni asintomatiche, delle diverse tecniche diagnostiche e dei vari quadri clinici delle forme sintomatiche

- Il virus si riscontra frequentemente nei luoghi in cui le condizioni igienico-sanitarie ambientali sono scadenti
- La malattia, di norma, ha un periodo di incubazione che va dalle 2 alle 7 settimane (in media 28 giorni) e viene superata senza gravi danni, la mortalità è scarsa
- ➤ I sintomi più comuni sono: febbre, malessere, anoressia, nausea e dolori addominali, essi possono essere seguiti dopo alcuni giorni da ittero. Il decorso va da 1-2 settimane fino a qualche mese
- ➤ Picco virale nelle feci: 2 settimane prima della comparsa dei sintomi. L'eliminazione del virus con le feci si protrae per 1~2 settimane dalla comparsa dei sintomi

- Possono essere colpiti soggetti di tutte le età, ma è più frequente negli adulti
- i bambini, spesso asintomatici possono fungere da vettori del virus
- L'immunità acquisita protegge il paziente per tutta la vita; non si può dire lo stesso dell'immunità da vaccino anche se la vaccinazione è sempre consigliabile

INATTIVAZIONE DEL HAV

- Studi sulla inattivazione termica di HAV raccomandano di elevare la temperatura interna dei molluschi a 85-90°C per 1 minuto e mezzo
- Altre prove effettuate su ostriche hanno dimostrato che il virus dell'epatite A viene completamente inattivato a 60,6°C per 19 minuti

DISTRIBUZIONE DELL'EPATITE A (HAV)

- > 1,4 milioni di casi/anno nel mondo
- CANADA: 2000 casi/anno di HAV (25% di questi necessita di ricovero)
- ➤ USA: 84.000 casi/anno

EPATITE E (HEV)

- Scoperta in India durante un'epidemia che ha coinvolto circa 29.000 persone
- Frequente nelle regioni tropicali, dopo la stagione delle piogge
- In Cina, nel 1988 sono stati registrati 119.000 casi
- > Il virus dell'epatite E appartiene alla famiglia Caliciviridae

EPATITE E (HEV)

- ➤ Il periodo di incubazione medio è di circa 6 settimane (da 2 a 9 settimane)
- La malattia acuta è molto simile alla HAV e la guarigione si ha in circa 2 settimane, generalmente senza conseguenze
- Particolarmente pericolosa nelle donne in gravidanza nelle quali si può manifestare in modo fulminante con percentuali di mortalità da 17 a 33%

CALICIVIRUS: NOROVIRUS E SAPOVIRUS

- Precedentemente noti come Norwalk Virus e Norwalk-like Virus, nome della cittadina dell'Ohio in cui sono stati scoperti, nel corso di una epidemia di gastroenterite verificatasi tra gli alunni di una scuola
- ➤ I Sapovirus, precedentemente noti come Sapporo Virus e Sapporo~like Virus differiscono dai Norovirus poiché mentre questi ultimi colpisoco persone di tutte le età, i Sapovirus causano diarrea specificamente nei bambini

CALICIVIRUS: NOROVIRUS E SAPOVIRUS

- ➤ Il primo caso legato a prodotti ittici è stato registrato in Australia nel 1979, in questo episodio furono coinvolte più di 2000 persone
- ➤ Nel 1980 nello Stato di New York, in corso di tre episodi, oltre 1000 persone accusarono sintomi gastroenterici dopo aver consumato ostriche e mitili
- Come per altre specie virali la principale via di trasmissione è quella oro-fecale

CALICIVIRUS: NOROVIRUS E SAPOVIRUS

- ➤ Il periodo di incubazione varia da un minimo di 12 ad un massimo di 60 ore ed è generalmente dose dipendente
- ➤ I sintomi includono malessere, dolori addominali, diarrea e vomito. Il decorso è piuttosto rapido, 24~48 ore
- L'immunità non è duratura e risulta limitata ad un periodo di tempo di durata inferiore ad 1 anno
- A causa delle difficoltà tecniche dell'identificazione di questi virus e della sintomatologia piuttosto aspecifica, la loro incidenza è spesso poco riconosciuta

CALICIVIRUS: NOROVIRUS E SAPOVIRUS

- Negli USA è stato calcolato che su 23 milioni di casi di gastroenteriti (in 8 anni), il 50% erano dovute a Norovirus
- In Olanda la percentuale sale all'80%, metà delle quali nei reparti di neonatologia
- Luglio 2009 ~ S. Felice del Benaco (BS): 320 persone coinvolte
- > Il virus delle navi da crociera

"La nave degli appestati"

- Anno 2003: nave da crociera *Aurora*, circa 1800 passeggeri e 800 membri di equipaggio, rischiato incidente diplomatico!
- > Primi 6 mesi del 2006: 42 episodi di NV su 13 navi da crociera
- Creazione di una *task force* per contrastare la diffusioni di norovirus sulle navi da crociera
- ➤ Gennaio 2006: 11 focolai con 260 casi in Danimarca per consumo di lattuga
- Primi 2 mesi del 2010: 334 casi in 65 diversi episodi in Europa: Regno Unito, Francia, Svezia e Danimarca. Tutti legati a consumo di ostriche

DIFFUSIONE DELLE INFEZIONI

- Molte infezioni presentano una distribuzione territoriale correlabile a: configurazione del territorio, clima, popolazione, comprendendo in quest'ultimo fattore i relativi livelli igienico-sanitari, le abitudini alimentari, l'economia
- ➤ I virus enterici vengono escreti in gran quantità con le feci di individui infetti e possono spesso ritrovarsi nelle acque di scarico.
- ➤ Questi virus sono più resistenti dei batteri enterici ai comuni trattamenti di bonifica, compresa la clorazione e possono quindi facilmente raggiungere e contaminare l'ambiente marino dove la loro sopravvivenza dipende da: temperatura, salinità, antagonismo microbico, radiazioni solari, presenza di plancton

DIFFUSIONE DELLE INFEZIONI

- La temperatura è senza dubbio il fattore condizionante più importante: molti virus enterici possono sopravvivere anche per parecchi mesi a temperature inferiori a 10°C
- ➤ I sedimenti marini possono proteggere i virus riducendo il grado di termo-inattivazione
- I virus vengono trattenuti dai molluschi per diversi giorni, anche se posti in acque di stabulazione pulite
- ➤ I virus enterici sopravvivono per settimane in prodotti ittici congelati: in un episodio di gastroenterite da Norwalk virus, verificatosi in U.S.A. nel 1980, i mitili erano stati congelati per 15 settimane prima del consumo

CONSIDERAZIONI

- Le metodiche biomolecolari per la determinazione dei virus trasmessi con gli alimenti non sono disponibili in tutti i laboratori
- > Alcuni virus non crescono su colture cellulari
- > Alcuni virus non determinano effetto citopatico
- Determinazioni sierologiche e test enzimatici: non sempre sono disponibili tutti i sieri necessari
- Microscopia elettronica: metodica poco sensibile poiché richiede alte cariche virali 10⁵~10⁶ particelle/ml)

CONSIDERAZIONI

UTILIZZO DI INDICATORI

- ➤ Un indicatore è una qualsiasi sostanza o agente la cui presenza in un campione suggerisce che i virus *potrebbero* essere anch'essi presenti. I più importanti virus trasmessi con gli alimenti provengono dall'intestino umano, quindi qualsiasi indicatore di contaminazione fecale può suggerire una contaminazione virale
- > ATTENZIONE: presenza di batteri di contaminazione fecale non significa presenza di virus e viceversa

MISURE DI PREVENZIONE

- > Corretto smaltimento dei liquami
- > Igiene delle persone e delle preparazioni
- > Utilizzo di acque potabili
- > Severi controlli in fase di commercializzazione
- > Adeguata cottura degli alimenti

RISULTATI PMM

Periodo 2008 ~ 2010	HAV Tot. esami	HAV N° positivi	HEV Tot. Esami	HEV N° positivi	Calici virus enterici Tot. esami	Calici virus enterici N° positivi			
Mitili ZONA A	27	0	27	0	27	1			
Mitili ZONA B	5	1*	5	0	5	O (1 esame in corso)			
Tapes ZONA B	52	1*	52	0	52	4			
Chamelea ZONA B	2	0	2	0	2	0			
* non dimostrata infettività su CC									

⁸²

PRINCIPALI MALATTIE PARASSITARIE TRASMISSIBILI ATTRAVERSO IL CONSUMO DI MOLLUSCHI

Cryptosporidiosi

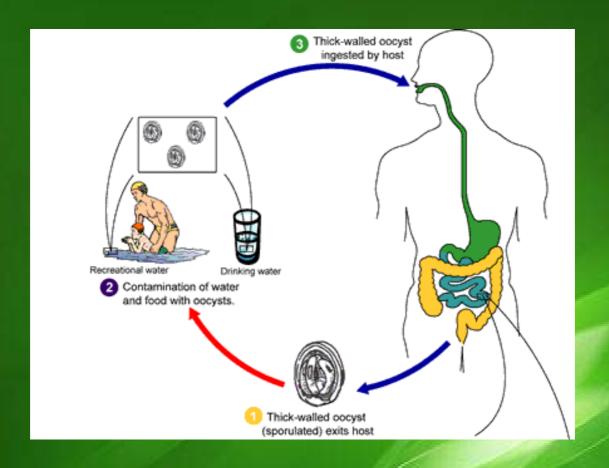
Giardiasi

Toxoplasmosi

CRYPTOSPORIDIOSI

- Le specie note di *Cryptosporidium* sono circa 20, tra queste *Cryptosporidium parvum* è il più patogeno per l'uomo
- Segnalati casi di malattia da C. felis, C. muris e C. meleagridis più frequenti in pazienti immonocompromessi
- Trasmissione diretta per via oro-fecale
- Periodo di incubazione: 5-28 giorni (7-10 in media) a seconda della dose infettante

CRYPTOSPORIDIOSI


- La cryptosporidiosi si manifesta con una diarrea profusa e acquosa, anoressia, vomito, nausea e dolori addominali
- Di solito i sintomi si risolvono entro 30 giorni
- Frequenti le infezioni asintomatiche che favoriscono la diffusione della malattia
- Il parassita è provvisto di una spessa parete esterna che gli consente di sopravvivere a lungo nell'ambiente e lo rende resistente ai disinfettanti a base di cloro

CRYPTOSPORIDIOSI ~ CICLO BIOLOGICO

- L'uomo si infetta ingerendo le oocisti del protozoo
- Nel tratto gastroenterico l'oocisti rilascia gli sporozoiti
- Gli sporozoiti si legano alla membrana apicale delle cellule epiteliali e stimolano la protrusione della membrana stessa a formare un vacuolo
- Quindi il parassita diventa intracellulare ma resta extracitoplasmatico
- Lo sporozoita si riproduce in maniera asessuata e forma merozoiti che, rilasciati nell'intestino, vanno a infettare altre cellule epiteliali e possono maturare a gametociti che possono produrre oocisti

CRYPTOSPORIDIOSI ~ CICLO BIOLOGICO

CDC Atlanta www.cdc.gov

DISTRIBUZIONE DELLA CRYPTOSPORIDIOSI

- 0,4 % della popolazione dei paesi industrializzati risulta positiva
- 2~2,5 % dei pazienti ospedalizzati con diarrea risulta positivo
- 75% dei donatori di sangue italiani mostra immunità cellulomediata

CRYPTOSPORIDIOSI

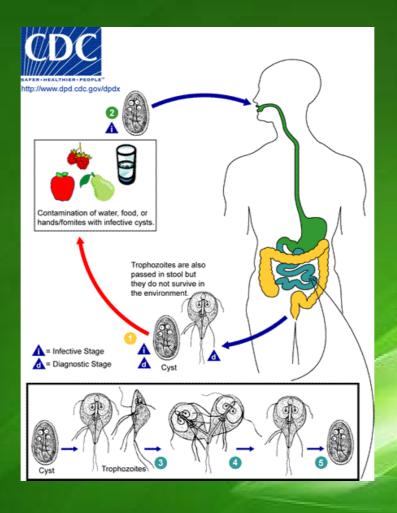
DIAGNOSI

- Esame delle feci
- Esame bioptico della mucosa intestinale
- IF diretta
- PCR

TERAPIA

Sintomatica e reidratante

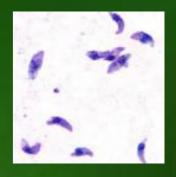
GIARDIASI



- La giardia è un protozoo flagellato che vive nell'acqua
- È cosmopolita: ha infatti come ospiti sia l'uomo che 40 diverse specie animali (anfibi, uccelli, mammiferi)
- La specie che può causare problemi di salute nell'uomo è *Giardia intestinalis* (sin. G. *lamblia* o G. *duodenalis*)
- Si tratta di una zoonosi che si trasmette per via oro-fecale: una volta entrata nell'organismo, la giardia provoca diarrea e disidratazione

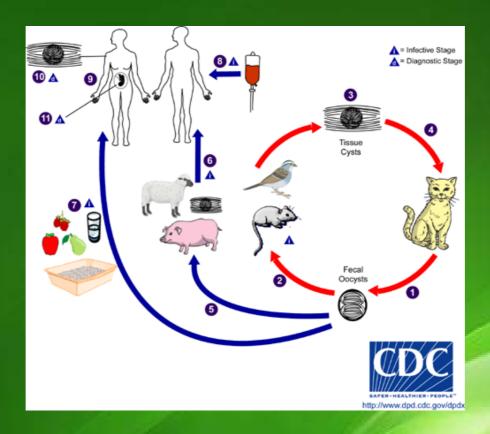
GIARDIASI - CICLO BIOLOGICO

- Il parassita viene espulso, con le feci, in forma cistica. Questa forma è difficile da debellare: resiste ai comuni trattamenti di disinfezione (come il cloro) e sopravvive nell'ambiente per mesi
- Una volta ingerita, la cisti resiste agli acidi gastrici e, nell'intestino tenue, diventa trofozoita
- A questo punto il parassita si lega alla mucosa intestinale e comincia a replicarsi
- Compaiono i sintomi della malattia: diarrea e disidratazione
- Altri trofozoiti si trasformano in cisti man mano che attraversano il tubo digerente e vengono eliminati con le feci.


GIARDIASI ~ CICLO BIOLOGICO

Ciclo biologico semplice, comprende solo 2 stadi: trofozoite e cisti

GIARDIASI


- Secondo l'OMS bastano 10 cisti per infettare un uomo
- La comparsa di sintomi dipende da molti fattori: l'età, la situazione immunitaria, lo stato di nutrizione del soggetto
- Il periodo di incubazione va da 12 a 19 giorni. I sintomi appaiono da 1 a 75 giorni dall'ingestione delle cisti e sono: dolori addominali, diarrea grassa e giallastra, perdita di peso, disidratazione. I sintomi possono durare anche 2-4 settimane
- Si può avere una forma sintomatica acuta o cronica
- Una parte delle persone infettate guarisce in 2-6 settimane, ma in un 30-50% dei casi la patologia cronicizza. In questi soggetti il parassita si replica a fasi intermittenti con diarrea ricorrente

- zoonosi indotta da *Toxoplasma gondii*, un protozoo che compie il suo ciclo vitale, estremamente complesso e diverso a seconda dell'ospite, solo all'interno delle cellule
- Il parassita, largamente distribuito nell'ambiente, può infettare molti animali (dai mammiferi agli uccelli, dai rettili ai molluschi) e può trasmettersi da un animale all'altro attraverso l'alimentazione con carne infetta
- Il *Toxoplasma gondii* non si trova solo nella carne, ma anche nelle feci di gatto e nel terreno in cui abbia defecato un gatto o un altro animale infetto

Nell'infezione da *Toxoplasma gondii* si distinguono due fasi successive:

- la prima (toxoplasmosi primaria) è caratterizzata da un periodo di settimane o mesi in cui il parassita si può ritrovare nel sangue e nei linfonodi in forma direttamente infettante. È la fase sintomatica, che si accompagna a ingrossamento dei linfonodi, stanchezza, mal di testa, mal di gola, a volte febbre e ingrossamento di fegato e milza
- La risposta del soggetto al *Toxoplasma gondii* determina il passaggio alla seconda fase (toxoplasmosi postprimaria), caratterizzata dall'assenza di segni clinici, ma con la persistenza del parassita nell'organismo, "incistato" nei muscoli e nel cervello. Se le difese immunitarie vengono meno (sia per malattia, sia per trattamenti medici), il microrganismo può tornare aggressivo, riprodursi e indurre nuovi danni

Trasmissione diretta uomo~uomo ESCLUSIVAMENTE:

- Madre-figlio (congenita)
- Trasfusioni di sangue
- Trapianti di organi

- Quando si infettano persone immunocompetenti la malattia è generalmente asintomatica
- Il soggetto che contrae una toxoplasmosi resta protetto per tutto l'arco della vita da recidive, perché risponde all'infezione con produzione di anticorpi e linfociti specifici
- La toxoplasmosi è ad alto rischio nel caso in cui venga contratta in gravidanza
- l'infezione può infatti passare al bambino attraverso la placenta, provocando in determinate circostanze malformazioni o addirittura l'aborto o la morte in utero

TOXOPLASMOSI ~ DIAGNOSI

- Poiché la malattia è spesso asintomatica, idealmente sarebbe bene conoscere il proprio stato prima della gravidanza, e cioè sapere se nel proprio siero siano presenti gli anticorpi per la toxoplasmosi
- Si tratta di un esame del sangue chiamato Toxo-test che permette di classificare le persone in tre classi:
 - Protetta
 - Suscettibile
 - A rischio

TOXOPLASMOSI – SITUAZIONE ATTUALE (IZSLER)

- Ricerca iniziata nel 2008
- Campioni esaminati
 - 27 Mitili (un caso sospetto in zona A)
 - 52 Vongole (tre casi sospetti in zona B)
- Progetto di Ricerca Corrente 2009

Ricerca Biotossine e Conta Cellule algali 2005 - 2009

	Tot. esami 2005	Pos. DSP 2005	Tot. esami 2006	Pos. DSP 2006	Tot. esami 2007	Pos. DSP 2007	Tot. esami 2008	Pos. DSP 2008	Tot. esami 2009	Pos. DSP 2009
Mitili ZONA A	169	4 (+43)	168	20 (+15)	204	46 (+4)	173	17 (+13)	153	4 (+4)
Mitili ZONA B	110	1 (+15)	84	10 (+11)	70	8 (+3)	11	0	40	2 (+1)
Ostriche ZONA A	7	0	7	0	7	0	5	0	5	0
Ostriche ZONA B	40	0	60	0	39	0	41	0	33	0
Tapes ZONA B	78	0	78	0	71	0	105	0	48	0
Chamaelea ZONA A			3		16	0	11	0	12	0 (+1)
Chamaelea ZONA B					12	o	9	0	9	o
Gasteropodi ZONA A			2		6	0	6	0	6	0
Acqua di mare	408		423		416		428		341	

2005	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Long-line												
B-Out												
B-In												
Sacca di Goro												
Lupini												
2006	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Long-line												
B-Out												
B-In												
Sacca di Goro												
Lupini												
2007	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Long-line												
B-Out												
B-In												
Sacca di Goro												
Lupini												
2008	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Long-line												
B-Out												
B-In												
Sacca di Goro												
Lupini												
2009	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Long-line												
B-Out												
B-In												
Sacca di Goro												
Lupini												

Conclusioni

- Secondo la FAO ogni abitante del pianeta consuma in media 16 Kg di prodotti ittici all'anno (tendenza in aumento)
- Secondo la FAO in un decennio (dal 1980 al 1990) i prodotti ittici hanno causato dal 10 al 19% delle tossinfezioni alimentari (soprattutto gastroenteriti)
- Nel 2006 il 96% delle ostriche e il 94% dei mitili consumati nel mondo venivano da allevamenti di acquacoltura (opportunità di monitorare e migliorare le qualità igieniche dei prodotti)